JOURNAL OF ENGINEERING PHYSICS

THREE-DIMENSIONAL TEMPERATURE FIELD OF A DISCRETELY GROWING

SEMIINFINITE COLUMN WITH HEAT RELEASE

Sh. N. Plyat

Inzhenerno-Fizicheskii Zhurnal, Vol. 12, No. 4, pp. 474—483, 1967

UDC 536.21

An analytic solution is obtained for the problem of the three-dimen-
sional temperature field of a semiinfinite column whose height varies
discretely with time. Heat release takes place in the growing part of
the column. Heat is transferred from the column to the medium by
convection.

Problems of this kind are encountered in investigat-
ing the temperature fields of massive hydraulic engi-
neering structures during the construction period when
they are divided into blocks for concrete pouring pur-
poses.

This paper is concerned with the temperature
field of a semiinfinite coluran with variable initial
temperature. At a certain point the height of the col-
umn begins to increase as a result of the addition of
discrete blocks. The blocks are added instantaneously,
each block being characterized by its own constant
initial temperature. Subsequently, heat is released in
the block at a rate that depends exponentially on time.
The intervals at which blocks are added may vary. The
temperature of the medium and the heat transfer coef-
ficients at the horizontal and vertical surfaces are also
different. The thermophysical characteristics of the
column are constant.

In this formulation the problem adequately reflects
the thermal conditions associated with the pouring of
a mass of concrete whose base is an "old" concrete
column and is also reasonably close to the thermal con-
ditions for concrete poured over a rock foundation.

In the given stage of growth let the column consist
of a base and n blocks.

We locate the coordinate origin at the upper hori-
zontal surface of the last k = n block and direct the OZ
axis into the column. The directions of the OX and OY
axes are as usual. Then the problem can be formu-
lated mathematically as follows.

The system of differential equations is written
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The boundary conditions at the surfaces of the growing
parts of the column are
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and at the block-base boundary
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The solution of this problem can be obtained by
- means of double cosine transformations, Laplace trans-
formations, and the Green's function [1,2, 4].

The result is
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The functions are found from the following expressions:
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Values of the Coefficients api, bpi, dpi> 8pi, ¢p
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The algorithm proposed by the author in [3] is recom~
mended for evaluating the integrals
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The same paper also gives tables of values of these

integrals.
As usual,
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The coefficients api, bpi, dpi, 8pis ¢p are found
from the expressions presented in the table,

In determining the function &) (zz,x,y, 7(0)) the
evaluation of the integral in expression (8) is particu-
larly important. The integrand contains the value
31 for a column consisting of (n — 1) blocks at the
moment when it is covered with the n-th block.

We write
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Here, R_j is the height of an "imaginary" block, which
in a certain sense is the reflection in the base of a real
block of height Rj.

In the general case the height R_j is a multiple of
the height Rj.

Since at large zg the function #(0-1) tends to Zero,
we can always choose a factor such that the second in-
tegral in (21) also tends to zero.

The evaluation of the first integral will be simpli-
fied if within the limits of each block, real and "imag-
inary,” the function <I>(n 1) is approximated by a formu-
1a of the type

@ = Py (2) Py (x) Py (),

where Py, Pg, Py are polynomials of degree o, 8,v.
The degree of the polynomial depends on the speci-
fied accuracy. As it is easy to show, with the above



JOURNAL OF ENGINEERING PHYSICS

approximation all the computations reduce to calcula-
tions based on simple recurrence relations.

NOTATION

n are the maximum number of blocks in column;
n are the number of blocks in the column at a particu~
lar stage of growth (hn = 1,2, ..., n); k is the number
of the block (counting from the base for which k = 0)
(k=1,2, ..., n); 2L x 2D are the plan dimensions of
column; Ry is the height of k-th block; T is the tem-
perature; Ty (4 ) and T; are the temperatures of the
k~th (I-th) block and base at any instant of time; (k)
is the temperature of the k~th block at the instant of
pouring (constant); T(cK) is the constant component of
the base temperature and also the temperature of the
medium at vertical surfaces in the base region; ¢f
and y5 are the temperatures of the medium at the
horizontal and vertical surfaces in region of blocks
during pouring of the next n-th block; T is the time;
7(0) ig the time from instant of pouring of the next
n-th block; 75 is the interval between pouring of the
(i = 1)-th block and its being covered with the n-th
block; ty is the "lifetime" of the k-th block; x, y, z are
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coordinates; zy is the coordinate z for the column con-
sisting of n blocks and base; hy(f), hy(n), hz(f) are the
relative heat transfer coefficients for column at a par~
ticular stage of growth; V2 = 8%/0x% + 0%ay? + 8%/ oz ;

qo = qo/cy; Bix =hx@)L; Biy =hy@D; #s is the
root of the transcendental equation ctg ug = ug/Bix;

"y is the root of the transcendental equation ctg np =

= %y/Biy.
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